376 research outputs found

    Development of Therapeutic-Grade Small Interfering RNAs by Chemical Engineering

    Get PDF
    Recent successes in clinical trials have provided important proof of concept that small interfering RNAs indeed constitute a new promising class of therapeutics. Although great efforts are still needed to ensure efficient means of delivery in vivo, the siRNA molecule itself has been successfully engineered by chemical modification to meet initial challenges regarding specificity, stability and immunogenicity. To date, a great wealth of siRNA architectures and types of chemical modification are available for promoting safe siRNA mediated gene silencing in vivo and, consequently, the choice of design and modification types can be challenging to individual experimenters. Here we review the literature and devise how to improve siRNA performance by structural design and specific chemical modification to ensure potent and specific gene silencing without unwarranted side effects and hereby complement the ongoing efforts to improve cell targeting and delivery by other carrier molecules

    Grønt regnskab 2004

    Get PDF

    Grønt regnskab 2003

    Get PDF

    Molecular strategies to inhibit HIV-1 replication

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) is the primary cause of the acquired immunodeficiency syndrome (AIDS), which is a slow, progressive and degenerative disease of the human immune system. The pathogenesis of HIV-1 is complex and characterized by the interplay of both viral and host factors. An intense global research effort into understanding the individual steps of the viral replication cycle and the dynamics during an infection has inspired researchers in the development of a wide spectrum of antiviral strategies. Practically every stage in the viral life cycle and every viral gene product is a potential target. In addition, several strategies are targeting host proteins that play an essential role in the viral life cycle. This review summarizes the main genetic approaches taken in such antiviral strategies

    Re-Inspection of Small RNA Sequence Datasets Reveals Several Novel Human miRNA Genes

    Get PDF
    BACKGROUND: miRNAs are key players in gene expression regulation. To fully understand the complex nature of cellular differentiation or initiation and progression of disease, it is important to assess the expression patterns of as many miRNAs as possible. Thereby, identifying novel miRNAs is an essential prerequisite to make possible a comprehensive and coherent understanding of cellular biology. METHODOLOGY/PRINCIPAL FINDINGS: Based on two extensive, but previously published, small RNA sequence datasets from human embryonic stem cells and human embroid bodies, respectively [1], we identified 112 novel miRNA-like structures and were able to validate miRNA processing in 12 out of 17 investigated cases. Several miRNA candidates were furthermore substantiated by including additional available small RNA datasets, thereby demonstrating the power of combining datasets to identify miRNAs that otherwise may be assigned as experimental noise. CONCLUSIONS/SIGNIFICANCE: Our analysis highlights that existing datasets are not yet exhaustedly studied and continuous re-analysis of the available data is important to uncover all features of small RNA sequencing

    Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites

    Get PDF
    BACKGROUND: A primary concern when targeting HIV-1 RNA by means of antisense related technologies is the accessibility of the targets. Using a library selection approach to define the most accessible sites for 20-mer oligonucleotides annealing within the highly structured 5'-UTR of the HIV-1 genome we have shown that there are at least four optimal targets available. RESULTS: The biological effect of antisense DNA and LNA oligonucleotides, DNA- and LNAzymes targeted to the four most accessible sites was tested for their abilities to block reverse transcription and dimerization of the HIV-1 RNA template in vitro, and to suppress HIV-1 production in cell culture. The neutralization of HIV-1 expression declined in the following order: antisense LNA > LNAzymes > DNAzymes and antisense DNA. The LNA modifications strongly enhanced the in vivo inhibitory activity of all the antisense constructs and some of the DNAzymes. Notably, two of the LNA modified antisense oligonucleotides inhibited HIV-1 production in cell culture very efficiently at concentration as low as 4 nM. CONCLUSION: LNAs targeted to experimentally selected binding sites can function as very potent inhibitors of HIV-1 expression in cell culture and may potentially be developed as antiviral drug in patients

    HIV-1 Rev oligomerization is not obligatory in the presence of an extra basic domain

    Get PDF
    BACKGROUND: The HIV-1 Rev regulatory protein binds as an oligomeric complex to viral RNA mediating nuclear export of incompletely spliced and non-spliced viral mRNAs encoding the viral structural proteins. However, the biological significance of the obligatory complex formation of Rev upon the viral RNA is unclear. RESULTS: The activity of various fusion proteins based on the negative oligomerization-defect Rev mutant M4 was tested using Rev dependent reporter constructs. An artificial M4 mutant dimer and an M4 mutant containing an extra basic domain from the HTLV-I Rex protein exhibited nearly full activity when compared to wild type Rev. CONCLUSION: Rev dimerization appears to be required to expose free basic domains whilst the Rev oligomeric complex remains bound to viral RNA via other basic domains
    corecore